Low-lying Zeros of Dihedral L-functions
نویسنده
چکیده
Assuming the grand Riemann hypothesis, we investigate the distribution of the lowlying zeros of the L-functions L(s, ψ), where ψ is a character of the ideal class group of the imaginary quadratic field Q( √ −D) (D squarefree, D > 3, D ≡ 3 (mod 4)). We prove that, in the vicinity of the central point s = 1/2, the average distribution of these zeros (for D −→ ∞) is governed by the symplectic distribution. By averaging over D, we go beyond the natural bound of the support of the Fourier transform of the test function. This problem is naturally linked with the question of counting primes p of the form 4p = m2 + Dn2, and sieve techniques are applied.
منابع مشابه
Low-lying Zeros of L-functions and Random Matrix Theory
By looking at the average behavior (n-level density) of the low-lying zeros of certain families of L-functions, we find evidence, as predicted by function field analogs, in favor of a spectral interpretation of the nontrivial zeros in terms of the classical compact groups.
متن کاملNumber Theory 19 Statistics for low - lying zeros of Hecke L - functions in the level aspect
We would like to provide evidence for the fact that zeros of L-functions seem to behave statistically as eigenvalues of random matrices of large rank throughout the instance of Hecke L-functions. First, we remind you of Iwaniec-Luo-Sarnak’s results on one-level densities for low-lying zeros of Hecke L-functions (see [5]) and Katz-Sarnak’s results on one-level densities for eigenvalues of orthog...
متن کامل2 9 A ug 2 00 2 LINEAR STATISTICS OF LOW - LYING ZEROS OF L – FUNCTIONS
We consider linear statistics of the scaled zeros of Dirichlet L– functions, and show that the first few moments converge to the Gaussian moments. The number of Gaussian moments depends on the particular statistic considered. The same phenomenon is found in Random Matrix Theory, where we consider linear statistics of scaled eigenphases for matrices in the unitary group. In that case the higher ...
متن کاملLow-lying Zeros of Quadratic Dirichlet L-functions, Hyper-elliptic Curves and Random Matrix Theory
The statistics of low-lying zeros of quadratic Dirichlet L-functions were conjectured by Katz and Sarnak to be given by the scaling limit of eigenvalues from the unitary symplectic ensemble. The n-level densities were found to be in agreement with this in a certain neighborhood of the origin in the Fourier domain by Rubinstein in his Ph.D. thesis in 1998. An attempt to extend the neighborhood w...
متن کامل